OAuth 2.1
The Future of API Security /

Rob Allen, October 2025

y J

My name's Rob Allen & I'm an API consultant. As much an API integrator as an API developer. Hire me!

MOVE TO NEXT SLIDE and talk details

OAuth is the standard for securing access to APIs

Rob Allen ~ akrabat.com

Today we're going to talk about OAuth. I want to look at what we've learned over the years since 2.0 was released and how this has lead us to the OAuth 2.1

OAuth allows a user to grant access to their data without sharing their credentials.

It is a best practice for API authorisation and has proven incredibly flexible over the years.

OAuth 2.0
A Refresher

Rob Allen ~ akrabat.com

Fundamentally, OAuth2.0 is all about using a short-lived token that can optionally be refreshed by the client

It's all about how we get that token the the client

OAuth 2.0 Roles

e Resource Owner (The User)
e Resource Server (The API)

e Client (The application that uses the API)
e Authorization Server (OAuth server)

Rob Allen ~ akrabat.com

Firstly we have the concept of roles. This does the another key thing about OAuth 2.0:

It separates the user, the client application, the API and the authorization server

OAuth 2.0 Protocol Flows

e Resource Owner Password Credentials
e Authorization Code

e Implict

e Client Credentials

Rob Allen ~ akrabat.com

A Protocol Flow (aka a Grant) is the way that the user logs in and we give a token to the client

Password Credentials Flow
For logging into 1st party apps

Rob Allen ~ akrabat.com

Application sends username/password to the credentials server and gets back a token

Use token for all requests from this point on

Password Credentials Flow

—

Here’s my
username & password

!

Application

Rob Allen ~ akrabat.com

Password Credentials Flow

Application

Give me
token please

1

Authorisation

Server

Rob Allen ~ akrabat.com

Password Credentials Flow

Application

Give me Here'’s a
token please token

Authorisation

Server

Rob Allen ~ akrabat.com

Password Credentials Flow

Application

Send message
with token

|

Rob Allen ~ akrabat.com

Authorization Code Flow
For logging into 3rd party websites

Rob Allen ~ akrabat.com

This is the one that everyone knows and thinks is OAuth 2.0

Only works when you have a secure back channel

Authorization Code Flow

o

| want to
log in

|

Application

Rob Allen ~ akrabat.com

Authorization Code Flow

o

| want to Get me
log In a token

Application

Rob Allen ~ akrabat.com

Authorization Code Flow

“

Log in

|

Authorisation

Server

Rob Allen ~ akrabat.com

That get-me-a-token request is actually a redirect to the authorization server with a code in the URL query string

Authorization Code Flow

| Dn::n['au

Log in trust this

l App?

Authorisation

Server

Rob Allen ~ akrabat.com

Authorization Code Flow

| Dn::n['au |

Log in trust this Yes!

-

Authorisation

Server

Rob Allen ~ akrabat.com

Authorization Code Flow

Authorisation
Server

Here's an
auth code

|

Application

Rob Allen ~ akrabat.com

The authorisation server redirect the user back to the application wiht a code IN THE URL QUERY STRING

Authorization Code Flow

Authorisation

Server

|

Here's an Give me
auth code token please

|

Application

Rob Allen ~ akrabat.com

The application uses the back channel to convert the code to a token

It sends its application client secret to do so

Authorization Code Flow

Authorisation

Server

|

Here'’s an Give me Here's a
auth code token please token

| l

Application

Rob Allen ~ akrabat.com

The application uses the back channel to convert the code to a token

It sends its application client secret to do so

Authorization Code Flow

Application

Send message
with token

|

Rob Allen ~ akrabat.com

Implicit Flow
For logging into 3rd party apps and web SPAs

Rob Allen ~ akrabat.com

Similar to Authorization Code flow, but much less secure

The user enters their username/password on our website, not the app's.

Use token for all requests from this point on

Implict Flow

o

| want to
log in

|

Application

Rob Allen ~ akrabat.com

Implict Flow

T

| want to Get me
log In a token

Application

Rob Allen ~ akrabat.com

Implict Flow

Log in

|

Authorisation
Server

Rob Allen ~ akrabat.com

Implict Flow

|

Do you
Log in trust this

l App?

Authorisation
Server

Rob Allen ~ akrabat.com

Implict Flow

|

Do you
Log in trust this Yes!
l T l

Authorisation

Server

Rob Allen ~ akrabat.com

Implict Flow

Authorisation

Server

Here's a
token

|

Application

Rob Allen ~ akrabat.com

This is the where we diverge from Authorization Code flow

The authorisation server redirect the user back to the application with the TOKEN ITSELF IN THE URL QUERY STRING

Implict Flow

Application

Send message
with token

|

Rob Allen ~ akrabat.com

Client Credentials Flow

For jobs that don't need user permission

Rob Allen ~ akrabat.com

The user enters their username/password on our website, not the app's.

Use token for all requests from this point on

Application gets token from credentials server for itself, not on behalf of a user

Use token for all requests from this point on

Client Credentials Flow

Application

Give me
token please

1

Authorisation

Server

Rob Allen ~ akrabat.com

Application passes its client id and client secret to the authorization server

Client Credentials Flow

Application

Give me Here'’s a
token please token

Authorisation

Server

Rob Allen ~ akrabat.com

Client Credentials Flow

Application

Send message
with token

|

Rob Allen ~ akrabat.com

The benefit here is that our API can be made uniform as the authentication flow for a server or user looks the same. Secondly, the credentials are per client, so the secret is not shared so widely as an API key might be.

OAuth 2.0 Refresh token

e Allows the client to gain a new access token
e Refresh tokens need to be kept secure
e Authorization server can choose not to issue

Rob Allen ~ akrabat.com

Access tokens are short-lived, so there's a process to allow a client to get a new one from a refresh token

Only works for flows with a secure back channel as the refresh token is the keys to the kingdom

OAuth 2.0 Since 2012

Rob Allen ~ akrabat.com

The OAuth 2.0 Framework in 2012

RFC 6749

\ RFC 6750

Rob Allen ~ akrabat.com

OAuth 2.0 was published in 2012 and consisted of just 2 RFCS

Since then, lots has has changed

The OAuth 2.0 Framework Today

Message Integrity

Discovery and Registration

Least Privilege Code Flow (
s) s ' N
RFC 7591
RFC 9396 RFC 8707 RFC 9207 RFC 9101 RFC 9701 JARM
OAuth 2.0 Rich Authorization Resource Indicatiors OAuth 2.0 Authorization Server The OAuth 2.0 Authorization Framework: JSON Web Token (JWT) Response JWT Secure Authorization OAuth 2.0 Dynamic Client Registration Protocol
Request for OAUth 2.0 Issuer |dentification JWT - Secured Authorization Request (JAR) for OAuth Token Introspection Response Mode for OAuth 2.0 l
Core
User Authentication RFC 7592
RFC 7009 RFC 8693 RFC 7636 RFC 9126 - S e ~
OAuth 2.0 Dynamic Client Registration Management Protocol
) Proof Key for Code Exchange OAuth 2.0 Pushed Authorization Request
.0 Toke h 2.0 Token Exch:
OAuth 2.0 Token Revocation OAuth 2.0 Token Exchange by Outh Public. Clients RFC 8176
~ - RFC 8414
Authentication Method
Access Token Reference Values
RFC 6749 [OAuth 2.0 Autherization Server Metadata
RFC 9470
The OAuth 2.0 Authorization Frameweork RFC 6750 RFC 9449 - -
OAuth 2.0 Step Up Authentication Challenge Protocol
The OAuth 2.0 Authorization Framework: OAuth 2.0 Demonstrating \S S
RFC 8628 Bearer Token Usage Proof of Posession (DPop)
Federation
OAuth 2.0 Device Authorization Grant)
RFC 7662 RFC 7519 RFC 7800
—
CIBA RFC 7523
OAuth 2.0 Token Introspection JSON Web Token (JWT) Proof-of-Posession Key Semantics
for JSON Web Tokens (JWTs) RFC 7521
Client Initiated Backchannel Authentication JSON Web Token (JWT) Profile
for OAuth 2.0 Client Authentication
- o and Authorization Grants
Best Current Practice l Assertion Framework for OAuth 2.0
s R Client Authentication and
Authorization Grants
RFC 7522
RFC 6819 RFC 8725 4—J RFC 9068 RFC 8705
OAuth 2.0 Threat Model and JSON Web Token (JWT) JSON Web Token (JWT) Profile OAuth 2.0 Mutual - TLS SA(“;/LL f&‘:ﬁﬂ'ﬁ.’iﬂ IOﬁut:dZO
Security Considerations Best Current Practices for OAuth 2.0 Access Tokens Client Authentication and :uthon'zatioﬁ G,(;mas
Certificate-Bound Access Token
\ . J
R
A RFC 8252
Copyright Curity. From https://curity.i pp!

Best Current Practice
for OAuth 2.0 Security

OAuth 2.0 for Native Apps

Rob Allen ~ akrabat.com

This diagram show 31 new RFCs since those original 2. We've learned a lot

This is why OAuth 2 is so powerful and useful, but some RFCs supercede or deprecate others

Key extensions since 2012

e RFC 7009: OAuth 2.0 Token Revocation

e RFC 7519: JSON Web Tokens (JWT)

e RFC 7636: Authorization Code without a client secret (PKCE)
e RFC 8628: Device Authorization grant for devices

Rob Allen ~ akrabat.com

There's also a lot of others related to message integrity, discovery, federation, etc.

Let's talk about a couple of them.

PKCE

e First created for mobile, but useful for all public clients
e Protects the authorization code in the redirect
e We know that the right client is converting the code to a token

Rob Allen ~ akrabat.com

Proof Key for Code Exchange - PKCE, pronounced Pixy

Problem: Auth code is returned in URL, so we need a client secret to turn an auth code into a token

No client secret in mobile or public apps, so no security from interception

PKCE worktlow

Application

Invents secret

Redirects with hash
of secret

y

Authorisation
Server

Rob Allen ~ akrabat.com

PKCE workftlow

Invents secret

Redirects with hash Logs in and trusts app

of secret

y y

Authorisation Authorisation
Server Server

Rob Allen ~ akrabat.com

PKCE workfilow
Application

Invents secret

Redirects with hash Logs in and trusts app Redirect with auth code

of secret

/ } |
Authorisation Authorisation L

Rob Allen ~ akrabat.com

PKCE worktlow

Invents secret

Redirects with hash Logs in and trusts app Redirect with auth code Sends auth code & secret

of secret

* Y Y) J
Authorisation Authorisation L Authorisation
Application
Server Server Server

Rob Allen ~ akrabat.com

T Authorisation C L Authorisation

Invents secret Hashes secret
; . . & compares
Redirects with hash Logs in and trusts app Redirect with auth code Sends auth code & secret
of secret Sends token

* Y Y ! ¢
Authorisation Authorisation S Authorisation .

Rob Allen ~ akrabat.com

Device Authorization Flow

For apps with no browser (or keyboard)

Rob Allen ~ akrabat.com

For apps with no browser (or keyboard)

Separates application that needs token from device that does authorisation

Only works when you have a secure back channel

Device Authorization Flow

Starts

y

Device App

f

Requestis Sends
code User Code
& URL

Authorisation

Server

Rob Allen ~ akrabat.com

Device Authorization Flow

Starts

y

Device App

f

Requestis Sends
code User Code
& URL

Authorisation

Server

Opens URL

y

Browser

. Enters
Logs in User Code
Voo

Authorisation
Server

Rob Allen ~ akrabat.com

Device Authorization Flow

Opens URL

Device App

Requestis Sends
code User Code
& URL

Authorisation

Server

Browser Device App

T

. Enters Sends
Logs in User Code Polls token
Voo

Authorisation Authorisation

Server

Server

Rob Allen ~ akrabat.com

Device Authorization Flow

Opens URL

Device App Browser Device App

Requestis Sends

\ Enters Sends
code User Code Logs in Polls
2 URL User Code token
l Y l

Authorisation Authorisation Authorisation

Server Server Server

Device App

Send message
with token

l

API

Rob Allen ~ akrabat.com

Best Practices since 2012

e RFC 7900: Best Current Practice for OAuth 2.0 Security
e RFC 8653: OAuth 2.0 for Native Apps
e OAUTH-WG: OAuth 2.0 for Browser Apps

Rob Allen ~ akrabat.com

Over the years, as we've worked out how to do OAuth better, we have written down some best practices

We have a general best practices guide, a specific one for native apps and an in-progress one for browser apps which is getting close to full RFC approval

OAuth 2.1

Rob Allen ~ akrabat.com

My main goal with OAuth 2.1 Is to capture the
current best practices in OAuth 2.0 as well as
its well-established extensions under a single
name.

Aaron Parecki

Rob Allen ~ akrabat.com

Key Objectives of OAuth 2.1

e Not a new protocol

Rob Allen ~ akrabat.com

It's a consolidation of OAuth 2.0 best practices. Doesn't break BC!

No new behaviour. No experimental features.

Key Objectives of OAuth 2.1

e Not a new protocol
e Simplifies the specification

Rob Allen ~ akrabat.com

Removes deprecated/insecure flows and other cases where a newer RFC obsoletes something in the original OAuth 2.0

Key Objectives of OAuth 2.1

e Not a new protocol
e Simplifies the specification
e |Incorporation of Best Current Practices

Rob Allen ~ akrabat.com

We've learned a lot, so we can make 2.1 more secure which leads to more consistent implementations across the industry

OAuth 2.1 Flows

e Authorization Code must be used with PKCE
e Device Authorization
e Client Credentials

Rob Allen ~ akrabat.com

There's just 3!

Implicit and Resource Owner Password Credentials flow are removed

Added Device credentials

Tokens

e No access tokens in query strings

Rob Allen ~ akrabat.com

Always use a Header or form data in a POST for an access token

Tokens

e No access tokens in query strings
e Refresh tokens must be sender constrained or one-time use

Rob Allen ~ akrabat.com

Sender contraints means that the token is bound to the client, so it can't be used by a different client. (by client secret or mutal TLS for instance)

One time use means that the token can only be used once, so if it's stolen, it can't be used again. Detect by second usage and disable both.

Tokens

e No access tokens in query strings
e Refresh tokens must be sender constrained or one-time use

e Refined token management (shorter lifetimes, rotation
policies)

Rob Allen ~ akrabat.com

Shorter lifetimes means that tokens expire quicker, so if they are stolen, they are only useful for a short time

Rotation policies means that refresh tokens are rotated on use, so if they are stolen, the legitimate client can detect this and disable both tokens

Other things

e Redirect URIs must be exact matches

Rob Allen ~ akrabat.com

This prevents an attacker from using a similar redirect URI to steal tokens

For instance, if your redirect URI is https://myapp.com/oauth/callback, an attacker can't use https://myapp.com.evil.com/oauth/callback

Other things

e Redirect URIs must be exact matches
e State parameter is now mandatory for CSRF protection

Rob Allen ~ akrabat.com

This was optional. Now its mandatory. Used to prevent CSRF attacks as client generates and verifies on return

Other things

e Redirect URIs must be exact matches
e State parameter is now mandatory for CSRF protection

e Confidential client now means a client that has credentials,
otherwise it's Public

Rob Allen ~ akrabat.com

This is just a terminology change to make it clearer

No more confusion about what a confidential client is.

A confidential client is one that can keep a secret, so has credentials. A public client is one that can't, so has no credentials

Going forwards

Rob Allen ~ akrabat.com

Migrating to 2.1

Rob Allen ~ akrabat.com

Migrating to 2.1

e Review current implementation

Rob Allen ~ akrabat.com

Migrating to 2.1

e Review current implementation
e Adopt Authorization Code flow with PKCE

Rob Allen ~ akrabat.com

Migrating to 2.1

e Review current implementation
e Adopt Authorization Code flow with PKCE
e Remove deprecated flows

Rob Allen ~ akrabat.com

Migrating to 2.1

e Review current implementation

e Adopt Authorization Code flow with PKCE
e Remove deprecated flows

e Secure redirect Uris

Rob Allen ~ akrabat.com

Migrating to 2.1

e Review current implementation

e Adopt Authorization Code flow with PKCE

e Remove deprecated flows

e Secure redirect Uris

e Review and implement the Best Current Practices

Rob Allen ~ akrabat.com

Other relatively new OAuth features

Rob Allen ~ akrabat.com

Let's also look at some other things that you can do now

Other relatively new OAuth features

e Demonstrating Proof of Possession (RFC 9449)
e Mutual TLS (RFC 8705)

Rob Allen ~ akrabat.com

Improve the security of your bearer token

DPoP: Cryptographically bind access token to a particular client

Mutual TLS: Bind to a client certificate

Other relatively new OAuth features

e JWT Profile for Access Tokens (RFC 9068)
e JWT-Secured Authorization Requests (RFC 9101)

Rob Allen ~ akrabat.com

JWT Profile for Access Tokens: Best Practices Standard

JWT-Secured Authorization Request: signed data in authorization request, even if in front channel. Can't be tampered, but can be seen. Also, only real client can initiate request

Other relatively new OAuth features

e Rich Authorization Requests (RFC 9396)
e Pushed Authorization Requests (RFC 9126)

Rob Allen ~ akrabat.com

Talking about data...

Rich Authorization Requests: Allows for finegrained, specific authorization (e.g. transfer of money), but Front channel attacker can see or modify

Pushed Authorization Requests: Send Rich Auth Requests in back channel, before Front channel initiates auth flow - keeps them secret

OAuth 2.0 is today's standard. Implement it, but be ready for 2.1

¢} Donatello @ HOR BERLIN
¥ @firebel.ly

OAuth 2.0? That's last years tech, I'm ready for 2.1!!!
8 May 2024 at 02:15

1like

- o O |i|

Rob Allen ~ akrabat.com

That's it. OAuth 2.1 and all the other standards make QAuth better and more secure. Please adopt them where you can!

R@Mﬁ ~ akrabat.com

	OAuth 2.0 Roles
	OAuth 2.0 Protocol Flows
	Password Credentials Flow
	Password Credentials Flow
	Password Credentials Flow
	Password Credentials Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Implict Flow
	Implict Flow
	Implict Flow
	Implict Flow
	Implict Flow
	Implict Flow
	Implict Flow
	Client Credentials Flow
	Client Credentials Flow
	Client Credentials Flow
	OAuth 2.0 Refresh token
	The OAuth 2.0 Framework in 2012
	The OAuth 2.0 Framework Today
	Key extensions since 2012
	PKCE
	PKCE workflow
	PKCE workflow
	PKCE workflow
	PKCE workflow
	PKCE workflow
	Device Authorization Flow
	Device Authorization Flow
	Device Authorization Flow
	Device Authorization Flow
	Best Practices since 2012
	Key Objectives of OAuth 2.1
	Key Objectives of OAuth 2.1
	Key Objectives of OAuth 2.1
	OAuth 2.1 Flows
	Tokens
	Tokens
	Tokens
	Other things
	Other things
	Other things
	Migrating to 2.1
	Migrating to 2.1
	Migrating to 2.1
	Migrating to 2.1
	Migrating to 2.1
	Migrating to 2.1
	Other relatively new OAuth features
	Other relatively new OAuth features
	Other relatively new OAuth features
	Other relatively new OAuth features

